Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Lancet Neurol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614108

RESUMO

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.

2.
Biol Trace Elem Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536638

RESUMO

The exposure of fish to heavy metals can significantly impact physiological processes and potentially lead to adverse health effects. This study assesses the effects of exposure to Cd and Pb sublethal concentrations in water on Wallagu attu. A total of 48 fish with an average body weight of 145.5 ± 26 g were distributed among three groups (control, Cd-treated, and Pb-treated) within 60 L fiberglass tanks. They were exposed to 30% sublethal concentrations of Cd and Pb for durations of 1, 15, and 30 days. Following this exposure, an assessment was conducted on metal bioaccumulation and hemato-biochemical responses. Results revealed a significantly (P < 0.05) higher concentration of heavy metals in the fish tissues of metals exposed groups than in the control. The concentration of Cd and Pb increases in fish tissues (kidney > gills > intestine) with exposure time. In most cases, the Pb-exposed group exhibited significantly (P < 0.05) higher concentrations of Pb in different tissues than the Cd-treated group. With extended exposure time, the activities of CAT and SOD show a significant decrease in both Cd and Pb-treated groups. However, the reduction in activities was more pronounced in the Cd-exposed group. On 15 and 30 days, the levels of red blood cells (RBC), hemoglobin (HB), hematocrit (HCT), and total protein (TP) decrease in groups exposed to Cd and Pb. The cortisol and glucose levels exhibit a more noticeable (P < 0.05) increase with prolonged exposure to Cd and Pb than the control group. On day 30, the survival rate decreased more in the Pb-exposed group. The findings of this study indicate that exposure to sublethal doses of Cd and Pb induces stress in Wallagu attu, resulting in rapid changes in specific hemato-biochemical parameters.

4.
medRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38293014

RESUMO

Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder. Mendelian forms have revealed multiple genes, with a notable emphasis on membrane trafficking; RAB GTPases play an important role in PD as a subset are both regulators and substrates of LRRK2 protein kinase. To explore the role of RAB GTPases in PD, we undertook a comprehensive examination of their genetic variability in familial PD. Methods: Affected probands from 130 multi-incident PD families underwent whole-exome sequencing and genotyping, Potential pathogenic variants in 61 RAB GTPases were genotyped in relatives to assess disease segregation. These variants were also genotyped in a larger case-control series, totaling 3,078 individuals (2,734 with PD). The single most significant finding was subsequently validated within genetic data (6,043 with PD). Clinical and pathologic findings were summarized for gene-identified patients, and haplotypes were constructed. In parallel, wild-type and mutant RAB GTPase structural variation, protein interactions, and resultant enzyme activities were assessed. Findings: We found RAB32 c.213C>G (Ser71Arg) to co-segregate with autosomal dominant parkinsonism in three multi-incident families. RAB32 Ser71Arg was also significantly associated with PD in case-control samples: genotyping and database searches identified thirteen more patients with the same variant that was absent in unaffected controls. Notably, RAB32 Ser71Arg heterozygotes share a common haplotype. At autopsy, one patient had sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In transfected cells the RAB32 Arg71 was twice as potent as Ser71 wild type to activate LRRK2 kinase. Interpretation: Our study provides unequivocal evidence to implicate RAB32 Ser71Arg in PD. Functional analysis demonstrates LRRK2 kinase activation. We provide a mechanistic explanation to expand and unify the etiopathogenesis of monogenic PD. Funding: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J. Fox Foundation for Parkinson's Research, and the UK Medical Research Council.

5.
J Neurogenet ; 37(4): 124-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109176

RESUMO

Autosomal recessive cerebellar ataxias (ARCA) constitute a highly heterogeneous group of progressive neurodegenerative disorders that typically occur prior to adulthood. Despite some clinical resemblance between these disorders, different genes are involved. We report in this study four Tunisian patients belonging to the same large consanguineous family, sharing autosomal recessive cerebellar ataxia phenotypes but with clinical, biological, electrophysiological, and radiological differences leading to the diagnosis of two distinct ARCA caused by two distinct gene defects. Two of our patients presented ataxia with the vitamin E deficiency (AVED) phenotype, and the other two presented ataxia with oculo-motor apraxia 2 (AOA2). Genetic testing confirmed the clinical diagnosis by the detection of a frameshift c.744delA pathogenic variant in the TTPA gene, which is the most frequent in Tunisia, and a new variant c.1075dupT in the SETX gene. In Tunisia, data suggest that genetic disorders are common. The combined effects of the founder effect and inbreeding, added to genetic drift, may increase the frequency of detrimental rare disorders. The genetic heterogeneity observed in this family highlights the difficulty of genetic counseling in an inbred population. The examination and genetic testing of all affected patients, not just the index patient, is essential to not miss a treatable ataxia such as AVED, as in the case of this family.


Assuntos
Ataxia Cerebelar , Ativador de Plasminogênio Tecidual , Deficiência de Vitamina E , Humanos , Ataxia/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/epidemiologia , Consanguinidade , DNA Helicases/genética , Heterogeneidade Genética , Enzimas Multifuncionais/genética , Mutação , RNA Helicases/genética , Ativador de Plasminogênio Tecidual/genética
7.
Mov Disord ; 38(10): 1837-1849, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482924

RESUMO

BACKGROUND: A mitochondrial polygenic score (MGS) is composed of genes related to mitochondrial function and found to be associated with Parkinson's disease (PD) risk. OBJECTIVE: To investigate the impact of the MGS and lifestyle/environment on age at onset (AAO) in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and idiopathic PD (iPD). METHODS: We included N = 486 patients with LRRK2-PD and N = 9259 with iPD from the Accelerating Medicines Partnership® Parkinson's Disease Knowledge Platform (AMP-PD), Fox Insight, and a Tunisian Arab-Berber founder population. Genotyping data were used to perform the MGS analysis. Additionally, lifestyle/environmental data were obtained from the PD Risk Factor Questionnaire (PD-RFQ). Linear regression models were used to assess the relationship between MGS, lifestyle/environment, and AAO. RESULTS: Our derived MGS was significantly higher in PD cases compared with controls (P = 1.1 × 10-8 ). We observed that higher MGS was significantly associated with earlier AAO in LRRK2-PD (P = 0.047, ß = -1.40) and there was the same trend with a smaller effect size in iPD (P = 0.231, ß = 0.22). There was a correlation between MGS and AAO in LRRK2-PD patients of European descent (P = 0.049, r = -0.12) that was visibly less pronounced in Tunisians (P = 0.449, r = -0.05). We found that the MGS interacted with caffeinated soda consumption (P = 0.003, ß = -5.65) in LRRK2-PD and with tobacco use (P = 0.010, ß = 1.32) in iPD. Thus, patients with a high MGS had an earlier AAO only if they consumed caffeinated soda or were non-smokers. CONCLUSIONS: The MGS was more strongly associated with earlier AAO in LRRK2-PD compared with iPD. Caffeinated soda consumption or tobacco use interacted with MGS to predict AAO. Our study suggests gene-environment interactions as modifiers of AAO in LRRK2-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Doença de Parkinson/complicações , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Idade de Início , Fatores de Risco , Estilo de Vida , Mutação
8.
Clin Case Rep ; 10(12): e6737, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36583195

RESUMO

CLCN2-related leukoencephalopathy (CC2L OMIM#: 615651) is a recently identified rare disorder. It is caused by autosomal recessive mutations in the CLCN2 gene and leads to the dysfunction of its encoded CLC-2 chloride channel protein with characteristic brain MRI features of leukoencephalopathy. We report the first Tunisian patient with clinical features of ClCN-2-related leukoencephalopathy. A 54-year-old female with a family history of leukemia, male infertility, motor disability, and headaches who initially presented with a tension-type headache and normal physical examination. At the follow-up, she developed mild gait ataxia and psycho-cognitive disturbances. A previously reported homozygous NM_004366.6(CLCN2):c.1709G > A (p.Trp570Ter) stop gained mutation was identified. This report expands the knowledge related to CC2L and highlights the clinical features in affected individuals of African descent.

9.
Cytokine ; 130: 155054, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32151963

RESUMO

Treg-mediated immune suppression involves many molecular mechanisms including the cleavage of inflammatory extracellular ATP to adenosine by CD39 ectoenzyme. In the peripheral blood of Multiple Sclerosis (MS) patients, it has been suggested that CD39+ Treg cells have the potential to suppress pro-inflammatory IL-17 secreting cells. Herein, we studied cellular phenotype and mRNA expression of CD39 and CD73 ectoenzymes in the Cerebrospinal fluid (CSF) of MS patients and another neuro-inflammatory disease: the Neuro-behçet's disease (NBD). Using qRT-PCR, we assessed mRNA expression of CD39 and CD73 as well as anti-inflammatory (IL-10) and pro-inflammatory (IL-6, TNF-α, IL-1ß) cytokines in patients Peripheral blood mononuclear cells (PBMCs) and CSF of 28 relapsing-remitting multiple sclerosis (RRMS), 20 NBD and 22 controls with non inflammatory neurological disorders (NIND). The most substantial result in the CSF was the higher expression of CD39 in both RRMS and NBD patients compared to NIND. While, the expression of CD73 in CSF samples of NBD was low. In RRMS samples, we detected a significant positive correlation of both CD39 and CD73 with IL-10 expression. Moreover, results by flow cytometry revealed a high percentage of CD39 Treg cells in RRMS CSF. CD39 was preferentially expressed on B cells of NBD. Regarding inflammatory response, we showed a significant increase of IL-6 mRNA expression in NBD patients CSF while in RRMS this increase concerned TNF-α. These results bring evidence that CD39 correlates positively with an anti-inflammatory IL-10 response in RRMS. In contrast, no such association was observed in CSF of NBD patients and CD39 was preferentially expressed on B cells.

10.
Nat Commun ; 10(1): 4790, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636353

RESUMO

Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Fibroblastos/metabolismo , Neurônios/metabolismo , Paraplegia Espástica Hereditária/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Retículo Endoplasmático/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Transdução de Sinais , Pele/citologia , Paraplegia Espástica Hereditária/metabolismo , Peixe-Zebra
11.
Neurodegener Dis ; 17(4-5): 208-212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28558379

RESUMO

BACKGROUND: Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with high clinical and genetic heterogeneity. In most cases, the cerebellar ataxia is not pure, and complicating clinical features such as pyramidal signs or extraneurological features are found. OBJECTIVE: To identify the genetic origin of the cerebellar ataxia for 3 consanguineous North African families presenting with ARCA. METHODS: Genome-wide high-density SNP genotyping and whole-exome sequencing were performed followed by Sanger sequencing for mutation confirmation. RESULTS: Two variants were identified in SLC25A46. Mutations in this gene have been previously associated with Charcot-Marie-Tooth type 2 and optic atrophy. While the previously reported variant p.Arg340Cys seems to be consistently associated with the same clinical features such as childhood onset, optic atrophy, gait and speech difficulties, and wasting of the lower limbs, the patient with the novel mutation p.Trp160Ser did not present with optic atrophy and his ocular abnormalities were limited to nystagmus and saccadic pursuit. CONCLUSION: In this study, we report a novel variant (p.Trp160Ser) in SLC25A46 and we broaden the phenotypic spectrum associated with mutations in SLC25A46.


Assuntos
Ataxia Cerebelar/genética , Proteínas Mitocondriais/genética , Mutação/genética , Proteínas de Transporte de Fosfato/genética , Adulto , Ataxia Cerebelar/diagnóstico por imagem , Consanguinidade , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , América do Norte
12.
Lancet Neurol ; 15(12): 1248-1256, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27692902

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) mutation 6055G→A (Gly2019Ser) accounts for roughly 1% of patients with Parkinson's disease in white populations, 13-30% in Ashkenazi Jewish populations, and 30-40% in North African Arab-Berber populations, although age of onset is variable. Some carriers have early-onset parkinsonism, whereas others remain asymptomatic despite advanced age. We aimed to use a genome-wide approach to identify genetic variability that directly affects LRRK2 Gly2019Ser penetrance. METHODS: Between 2006 and 2012, we recruited Arab-Berber patients with Parkinson's disease and their family members (aged 18 years or older) at the Mongi Ben Hamida National Institute of Neurology (Tunis, Tunisia). Patients with Parkinson's disease were diagnosed by movement disorder specialists in accordance with the UK Parkinson's Disease Society Brain Bank criteria, without exclusion of familial parkinsonism. LRRK2 carrier status was confirmed by Sanger sequencing or TaqMan SNP assays-on-demand. We did genome-wide linkage analysis using data from multi-incident Arab-Berber families with Parkinson's disease and LRRK2 Gly2019Ser (with both affected and unaffected family members). We assessed Parkinson's disease age of onset both as a categorical variable (dichotomised by median onset) and as a quantitative trait. We used data from another cohort of unrelated Tunisian LRRK2 Gly2019Ser carriers for subsequent locus-specific genotyping and association analyses. Whole-genome sequencing in a subset of 14 unrelated Arab-Berber individuals who were LRRK2 Gly2019Ser carriers (seven with early-onset disease and seven elderly unaffected individuals) subsequently informed imputation and haplotype analyses. We replicated the findings in separate series of LRRK2 Gly2019Ser carriers originating from Algeria, France, Norway, and North America. We also investigated associations between genotype, gene, and protein expression in human striatal tissues and murine LRRK2 Gly2019Ser cortical neurons. FINDINGS: Using data from 41 multi-incident Arab-Berber families with Parkinson's disease and LRRK2 Gly2019Ser (150 patients and 103 unaffected family members), we identified significant linkage on chromosome 1q23.3 to 1q24.3 (non-parametric logarithm of odds score 2·9, model-based logarithm of odds score 4·99, θ=0 at D1S2768). In a cohort of unrelated Arab-Berber LRRK2 Gly2019Ser carriers, subsequent association mapping within the linkage region suggested genetic variability within DNM3 as an age-of-onset modifier of disease (n=232; rs2421947; haplotype p=1·07 × 10-7). We found that DNM3 rs2421947 was a haplotype tag for which the median onset of LRRK2 parkinsonism in GG carriers was 12·5 years younger than that of CC carriers (Arab-Berber cohort, hazard ratio [HR] 1·89, 95% CI 1·20-2·98). Replication analyses in separate series from Algeria, France, Norway, and North America (n=263) supported this finding (meta-analysis HR 1·61, 95% CI 1·15-2·27, p=0·02). In human striatum, DNM3 expression varied as a function of rs2421947 genotype, and dynamin-3 localisation was perturbed in murine LRRK2 Gly2019Ser cortical neurons. INTERPRETATION: Genetic variability in DNM3 modifies age of onset for LRRK2 Gly2019Ser parkinsonism and informs disease-relevant translational neuroscience. Our results could be useful in genetic counselling for carriers of this mutation and in clinical trial design. FUNDING: The Canada Excellence Research Chairs (CERC), Leading Edge Endowment Fund (LEEF), Don Rix BC Leadership Chair in Genetic Medicine, National Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael J Fox Foundation, Mayo Foundation, the Roger de Spoelberch Foundation, and GlaxoSmithKline.


Assuntos
Dinamina III/genética , Ligação Genética/genética , Estudo de Associação Genômica Ampla , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Árabes/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/etnologia , Linhagem , Penetrância , Tunísia/etnologia
13.
Cell Rep ; 16(1): 79-91, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320912

RESUMO

A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.


Assuntos
Calpaína/genética , Ataxia Cerebelar/genética , Cerebelo/embriologia , Cerebelo/metabolismo , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Apoptose , Calpaína/química , Calpaína/metabolismo , Contagem de Células , Ataxia Cerebelar/patologia , Ataxia Cerebelar/fisiopatologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Ativação Enzimática , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos Knockout , Atividade Motora , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Mutação/genética , Proteínas Nucleares/metabolismo , Atrofia Óptica/genética , Atrofia Óptica/patologia , Atrofia Óptica/fisiopatologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Transmissão Sináptica
14.
Mov Disord ; 30(2): 253-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487881

RESUMO

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) were found to be a significant cause of late-onset autosomal dominant forms of Parkinson's disease (PD). To determine the motor characteristics of LRRK2-related disease, we conducted a longitudinal study of 58 G2019S LRRK2-associated PD patients and compared them with genetically undefined (GU) PD patients. Fifty-eight patients diagnosed with PD-related LRRK2 G2019S mutation were included in the study and compared with 54 sporadic PD patients with negative tests for LRRK2 G2019S, PINK1, SNCA, PRKN, and DJ1 mutations. Patients were assessed at baseline and after a follow-up period of 6 years. The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), the Hoehn and Yahr, and the Schwab and England scores were determined. Logistic regression was used to examine associations of G2019S mutation status with motor phenotype and rate of motor decline. The LRRK2-associated PD patients had a mean age of onset of 56.25 ± 12.05 years and in most cases (58.6%) a postural instability gait difficulty (PIGD) phenotype. The mean annual decline in the MDS-UDRS III motor score and the Hoehn and Yahr staging was of 1.3% and 2%, respectively. The PIGD phenotype predicted a more rapid progression of motor impairment. The PD motor phenotype and motor scores were similar in the LRRK2-associated PD group and in the GU PD group, with no significant differences in the progression rate of motor impairment. Motor phenotype seems to be similar in LRRK2-related PD and idiopathic PD.


Assuntos
Marcha/fisiologia , Predisposição Genética para Doença , Mutação/genética , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Tunísia
15.
Brain ; 137(Pt 2): 402-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24369383

RESUMO

Ataxia with vitamin E deficiency is an autosomal recessive cerebellar ataxia caused by mutations in the α-tocopherol transfer protein coding gene localized on chromosome 8q, leading to lower levels of serum vitamin E. More than 91 patients diagnosed with ataxia with vitamin E deficiency have been reported worldwide. The majority of cases originated in the Mediterranean region, and the 744delA was the most common mutation among the 22 mutants previously described. We examined the clinical and molecular features of a large cohort of 132 Tunisian patients affected with ataxia with vitamin E deficiency. Of these patients, nerve conduction studies were performed on 45, and nerve biopsy was performed on 13. Serum vitamin E was dramatically reduced for 105 of the patients analysed. Molecular analysis revealed that 91.7% of the patients (n = 121) were homozygous for the 744delA mutation. Three other mutations were detected among the remaining patients (8.3%, n = 11) in the homozygous state. Two were previously reported (400C>T and 205-1G>T), and one was novel (553+1T>A). Age of onset was 13.2 ± 5.9 years, with extremes of 2 and 37 years. All described patients exhibited persistent progressive cerebellar ataxia with generally absent tendon reflexes. Deep sensory disturbances, pyramidal syndrome and skeletal deformities were frequent. Head tremor was present in 40% of the patients. Absence of neuropathy or mild peripheral neuropathy was noted in more than half of the cohort. This is the largest study of the genetic, clinical and peripheral neuropathic characteristics in patients with ataxia and vitamin E deficiency. The 744delA mutation represents the most common pathological mutation in Tunisia and worldwide, likely because of a Mediterranean founder effect. Our study led us to suggest that any patient displaying an autosomal recessive cerebellar ataxia phenotype with absent tendon reflexes and minor nerve abnormalities should first be screened for the 744delA mutation, even in the absence of a serum vitamin E measurement.


Assuntos
Ataxia/diagnóstico , Ataxia/epidemiologia , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/epidemiologia , Deficiência de Vitamina E/diagnóstico , Deficiência de Vitamina E/epidemiologia , Adolescente , Adulto , Ataxia/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Mutação/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Tunísia/epidemiologia , Deficiência de Vitamina E/genética , Adulto Jovem
16.
Neurobiol Aging ; 35(5): 1125-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24355527

RESUMO

Parkinson disease is a progressive neurodegenerative disease for which leucine-rich repeat kinase 2 (LRRK2 carriers) p.G2019S confers substantial genotypic and population attributable risk. With informed consent, we have recruited clinical data from 778 patients from Tunisia (of which 266 have LRRK2 parkinsonism) and 580 unaffected subjects. Motor, autonomic, and cognitive assessments in idiopathic Parkinson disease and LRRK2 patients were compared with regression models. The age-associated cumulative incidence of LRRK2 parkinsonism was also estimated using case-control and family-based designs. LRRK2 parkinsonism patients had slightly less gastrointestinal dysfunction and rapid eye movement sleep disorder. Overall, disease penetrance in LRRK2 carriers was 80% by 70 years but women become affected a median 5 years younger than men. Idiopathic Parkinson disease patients with younger age at diagnosis have slower disease progression. However, age at diagnoses does not predict progression in LRRK2 parkinsonism. LRRK2 p.G2019S mutation is a useful aid to diagnosis and modifiers of disease in LRRK2 parkinsonism may aid in developing therapeutic targets.


Assuntos
Mutação , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Fatores Etários , Idade de Início , Idoso , Estudos de Casos e Controles , Cognição , Progressão da Doença , Feminino , Humanos , Incidência , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Atividade Motora , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia , Doença de Parkinson/fisiopatologia , Análise de Regressão , Risco , Fatores Sexuais
17.
J Clin Neurosci ; 21(2): 311-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24139731

RESUMO

Abetalipoproteinemia (ABL) is a rare monogenic disease characterized by very low plasma levels of cholesterol and triglyceride and almost complete absence of apolipoprotein B (apoB)-containing lipoproteins. Typically, patients present with failure to thrive, acanthocytosis, pigmented retinopathy and neurological features. It has been shown that ABL results from mutations in the gene encoding the microsomal triglyceride transfer protein (MTTP). Sanger sequencing of MTTP was performed for two unrelated consanguineous Tunisian families with two affected individuals each, presenting a more severe ABL phenotype than previously reported in the literature. The patients were found to be homozygous for two novel mutations. In the first family, a nonsense mutation, c.2313T>A, leading to a truncated protein (p.Y771X) was identified. In the second family, a splice mutation, IVS 9+2T>G, was found. These mutations are believed to abolish the assembly and secretion of apoB-containing lipoproteins.


Assuntos
Abetalipoproteinemia/diagnóstico , Abetalipoproteinemia/genética , Proteínas de Transporte/genética , Abetalipoproteinemia/sangue , Abetalipoproteinemia/patologia , Acantócitos/patologia , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Códon sem Sentido , Família , Feminino , Pé/patologia , Deformidades do Pé , Humanos , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Tunísia , Adulto Jovem
18.
Handb Clin Neurol ; 115: 933-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23931822

RESUMO

Giant axonal neuropathy (GAN) is a rare hereditary autosomal recessive neurodegenerative disease affecting both the peripheral and the central nervous system. Clinically it is characterized by an age of onset during the first decade, progressive and severe motor sensory neuropathy followed, in some patients, by the occurrence of various central nervous system signs such as cerebellar syndrome, upper motor neuron signs, or epilepsy. Although kinky hairs are reported in the majority of patients, it is not a constant finding. The prognosis is usually severe with death occurring during the second or third decade; nevertheless a less severe course is reported in some patients. The presence of a variable number of giant axons filled with neurofilaments in the nerve biopsy represents the pathological feature of the disease and it is usually associated to a variable degree with axonal loss and demyelization. Giant axons are also found in the central nervous system associated with Rosenthal fibers and a variable degree of involvement of white matter and neuronal loss. The disease is caused by mutation in the GAN gene encoding for gigaxonin, a member of BTB-Kelch. Up to now 37 mutations in the GAN gene have been reported. These mutations are scattered over the 11 exons of the gene without a clear genotype-phenotype correlation. These mutations resulting in gigaxonin deficiency lead to a slow down in ubiquitin-mediated protein degradation and possibly of other unidentified proteins. GAN represents a good model of a neurodegenerative disorder in which there is a primary defect of the ubiquitin proteasome system and its network with neurofilaments. The clarification of molecular mechanisms involved in GAN can help in understanding other frequent neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson disease.


Assuntos
Neuropatia Axonal Gigante , Proteínas do Citoesqueleto/genética , Eletromiografia , Neuropatia Axonal Gigante/diagnóstico , Neuropatia Axonal Gigante/fisiopatologia , Neuropatia Axonal Gigante/terapia , Humanos , Mutação/genética , Fibras Nervosas/patologia , Fibras Nervosas/ultraestrutura
19.
Am J Hum Genet ; 92(2): 245-51, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23332917

RESUMO

Autosomal-recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders with more than 20 different forms currently recognized, many of which are also associated with increased tone and some of which have limb spasticity. Gaucher disease is a lysosomal storage disease resulting from a defect in the enzyme acid ß-glucosidase 1. ß-glucosidase 2 is an enzyme with similar glucosylceramidase activity but to date has not been associated with a monogenic disorder. We studied four unrelated consanguineous families of Tunisian decent diagnosed with cerebellar ataxia of unknown origin. We performed homozygosity mapping and whole-exome sequencing in an attempt to identify the genetic origin of their disorder. We were able to identify mutations responsible for autosomal-recessive ataxia in these families within the gene encoding ß-glucosidase 2, GBA2. Two nonsense mutations (c.363C>A [p.Tyr121(∗)] and c.1018C>T [p.Arg340(∗)]) and a substitution (c.2618G>A [p.Arg873His]) were identified, probably resulting in nonfunctional enzyme. This study suggests GBA2 mutations are a cause of recessive spastic ataxia and responsible for a form of glucosylceramide storage disease in humans.


Assuntos
Ataxia Cerebelar/complicações , Ataxia Cerebelar/genética , Genes Recessivos/genética , Espasticidade Muscular/complicações , Espasticidade Muscular/genética , Mutação/genética , beta-Glucosidase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Família , Feminino , Glucosilceramidase , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Tunísia , beta-Glucosidase/química
20.
Diagn Mol Pathol ; 21(4): 241-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23111195

RESUMO

Ataxia with oculomotor apraxia type 2 (AOA2) is a recently described autosomal recessive cerebellar ataxia caused by mutations in the SETX gene. It is a rare monogenic disease characterized by progressive cerebellar ataxia, oculomotor apraxia, axonal sensorimotor neuropathy, and an elevated serum α-fetoprotein level. To date, >100 AOA2 patients have been described and 75 different mutations in the SETX gene have been identified. We report here the clinical and genetic findings of 13 AOA2 patients from 5 unrelated Tunisian consanguineous families. DNA was collected from probands and available family members, and the 24 SETX exons were screened by direct sequencing. Four different homozygous SETX gene mutations were identified. The missense mutation 915G>T [W305C] has been described previously in Algeria. The 3 other SETX mutations are novel, including a missense mutation c.7231C>T [R 2380 W], a nonsense mutation c.6475 C>T [R2098X], and a deletion c.7180-7183delAAAA [D2332fsX2343]. More extensive screening by molecular genetic analysis of SETX in patients with Friedreich ataxia-like phenotype may show that AOA2 is more common in Tunisia than previously thought.


Assuntos
Mutação , RNA Helicases/genética , Degenerações Espinocerebelares/genética , Adolescente , Idade de Início , Criança , Códon sem Sentido , Consanguinidade , DNA Helicases , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Masculino , Enzimas Multifuncionais , Mutação de Sentido Incorreto , Ataxias Espinocerebelares/congênito , Degenerações Espinocerebelares/epidemiologia , Tunísia/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...